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Abstract 

We study the inclusive two jet triply differential cross section d30fdETdr)ldqz at 
Fermilab energies. Different 71 and 72 pseudorapidity regions are directly related to 
both the parton level matrix elements and the parton densities at leading order. We 
present the next-to-leading order [O(cli)] corrections and show that the shape of the dis- 
tribution at fixed transverse energy ET is a particularly powerful tool for constraining 
the parton distributions at small to moderate z values. We investigate the renormal- 
isation/factorisation scale uncertainty present in the normalisation and shape of the 
distribution at next-to-leading order. We discuss specific slices of the distribution, the 
same-side/opposite side ratio and the signed pseudorapidity distribution, in detail and 
compare them with preliminary experimental data. 
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1 Introduction 

Dijet production in hadron collisions occurs when two partons from the incident hadrons 
undergo a hard pointlike interaction and scatter at relatively large angles. The two-jet cross 
section depends on both the non-perturbative probability of finding a particular parton inside 
the parent hadron and the dynamics of the hard scattering. By examining kinematic regions 
where the parton densities are well known, we can probe the pointlike strong-interaction 
cross section. One example of this is the shape of the angular distribution of the jets in their 
centre of mass frame. Recent data provide clear evidence that a running coupling constant, 
as given by &CD, is needed to describe the data [I] and that the next-to-leading order QCD 
predictions [2] are in good agreement with the data. An alternative approach is to use the 
theoretical description of the hard scattering to extract the distribution of partons in the 
proton from the data. This is particularly interesting since gluon scattering plays a very 
important role in two jet production, and it may be possible to probe the gluon density in 
a more direct way than is possible in deeply inelastic scattering or in Drell-Yan processes. 

The inclusive two-jet cross section can be described in terms of variables most suited 
to the geometry of the detector; the transverse energy of the leading jet, ET = ETA, and 
the pseudorapidities of the two leading jets, ~1 and Q. Recently, the DO collaboration has 
presented a preliminary measurement of d3u/dETdqlde [l] as a function of ni and ns at fixed 
ET. This seemingly complicated three-dimensional quantity contains all the information 
available from two jet events. In particular, at leading order, 111 and ns are directly related 
to the parton momentum fractions xi, 22, 

XI = $ (exp(q1) + exp(q2)) , 

x2 = $ (w(-qd + exd-w)), 
(1) 

so that a measurement of the triply differential cross section d3u/dETdqldm at fixed ET 
corresponds to a measurement of &o/dxldx2. Although the overall normalisation of cross 
sections is uncertain in perturbative QCD, one might hope that the shape of this distribution 
is well-predicted and that it can be used to discriminate between different parton densities, 
Inclusion of the next-to-leading order corrections enhances the reliability of the calculation 
for both shape and normalisation. 

Beyond leading order, however, Eq. 1 is no longer satisfied and the parton momentum 
fractions are only approximately determined by the transverse energies and pseudorapidities 
of the jets. A three-dimensional plot may obscure some of the desired physics, so both 
the CDF [3] and DO [l, 41 collaborations have focused on particular slices of the general 
distribution. The CDF collaboration has examined the ratio of cross sections for same-side 
events (7;i N B) to opposite-side events (71 N -9) for different ET bins. This reduces the 
normabLation uncertainty and enhances the small I region, 1: N 4Esl.s. At small transverse 



energies, this distribution can reliably discriminate between singular (zg(s) N r-o,5 at small 
I) and non-singular zg(z) N 5” behavior of the gluon distribution [5]. The DO collaboration 
has taken slices in qi which contain information over the whole z range, 4Eg/s < z < 1, 
but are more sensitive to the overall normalisation. In this paper, we study the shape 
of the distribution over the whole vi--w plane. First, we examine the triply-differential 
distribution at lowest order. We discuss how the available phase space grows as the number 
of final state partons increases and relate different 111 and w regions to both the parton 
level matrix elements and the parton densities (section 2). The full next-to-leading order 
triply-differential cross section is presented in section 3. We show that it is sensitive to 
the parton density functions and indicate how the shape depends on the renormalisation 
(and factorisation) scale. Our results are applied to the CDF same-side/opposite-side and 
DO signed distributions in sections 4 and 5. Finally, our main findings are summarised in 
section 6. 

2 The O(c$) triply differential two jet cross section 

The lowest order cross section is given by, 

d3a 

d&h h 

where fi(r, pip) (i = g, Q, Q) represents the density of parton i in the proton at factorisation 
scale PF and ]M$ is the lowest order squared matrix element for ij -* 2 partons summed 
and averaged over initial and final state spins and colours. The strong couping constant a, 
is evaluated at the renormalisation scale, ps. The parton level cross section is insensitive 
to Lorentz boosts and ]Mij]’ therefore depends only on the parton pseudorapidity in the 
parton-parton rest frame, q* = (VI-%)/~. T o understand how the cross section is distributed 
over the ~1 - w plane, we recall the ‘single effective subprocess approximation’ [6]. In 
this approximation all parton-parton scattering cross sections are taken to be equal but 
are weighted by colour arguments. T$us the gluon-gluon, quark-gluon and quark-quark 
subprocesses are in the ratio 1 : $ : ($) so that, 

d3u 

d&dvldvz 

where F(z, ,u) is the ‘single effective parton density’, 

wb PI = g(x, P) + ; c (q(x, PI + Q(z, PL)) 
‘I 

(4) 

A rough indication of how the physical cross section depends on 7, and % can be obtained 
by studying the parton-parton luminosity, zrF(si, p) ~~F(Q,/.J), and the squared matrix 
elements, IM,,[*/ cosh4 q*, for gluon-gluon scattering separately. 
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Figure 1: The phase space boundary in the r/i - w plane at leading-order (solid) and next- 
to-leading order (dotted) for ET = 50 GeV and fi = 1800 GeV. The dashed line separates 
the ‘small’ I - ‘large’ x and ‘large’ z - ‘large’ r regions. In region I, either xi or x2 is less 
than XT, while in region II, both zt and x2 are bigger than XT. Region III is only permitted 
at next-to-leading order. 

However, to orient ourselves in the ~1 - % plane, we first focus on the allowed phase 
space in terms of ~1 and w. At lowest order, the jet pseudorapidities are directly related to 
the parton fractions via Eq. 1. Since the momentum fraction cannot exceed unity, we find, 

_ log 
( 

2 - XT d-71) 
XT 

) <m<log(-:p(~~~). 

and. 

1~ < cash-’ $ , 
( > 

where XT = 2&/fi and x+ < ~1x2 < 1. This boundary is shown in Fig. 1 for ET = 50 GeV 
and fi = 1800 GeV. For the opposite-side cross section, 171 N -w, the parton fractions are 
roughly equal so that in the top left and bottom right corners of the allowed phase space. 
2‘1 N x:, -+ 1. On the other hand, in the bottom left and top right corners, corresponding to 
same-side events with ~1 N Q, the parton fractions are maximally different, xi + x$, z2 + 1 
and vice versa. The dashed boundary separating region I and II makes a nominal division 
of the phase space according to whether both partpn fractions are ‘large’ or one parton 
fraction is ‘small’. In region II, xi and ~2 > XT while in region I, either xi < xT or x2 < I~. 
The corresponding axes for the pseudorapidities of the two jet system in the laboratory, 
soost = (71 + 1)2)/2, and of the jet in the jet-jet center of mass frame, 7’ = (71 - ~)/2. are 
related by a rotation of 45’. 
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Figure 2: Contours of (a) constant 71 and (b) constant II* in the 5, -x2 plane for ET = 50 GeV 
and fi = 1800 GeV. 

At lowest order in perturbative &CD, each point in the 71 - oh plane is uniquely related 
to the parton momentum fractions zr and za via Eq. 1. To give an idea of how different 
z values are spread over the allowed pseudorapidities, we show contours of fixed vi in the 
xi - 22 plane in Fig. 2. At fixed 71, the smallest xi value occurs when w is a minimum, 
while ti is a maximum for the smallest 22 value. An alternative way of looking at the zi -x2 
plane using the 7’ and soost variables is shown in Fig. 2b. For a given q*, varying mboost 
over its allowed range takes (~1~~2) = (l,x~cosh*(~‘)) to (zi,zrs) = (x$cosh2(q’), 1) while 
preserving 21x2 = xtcosh2(v’). These contours are particularly useful since the parton 
matrix elements depend only on 17’ and not on qaoost. 

Although the charged parton distributions have been probed directly over a wide range 
of p&on momentum fractions I and scales Q* in deeply inelastic scattering, the gluon 
density is rather poorly known. Direct photon data from WA70 [7] determine the shape of 
the gluon in the x N 0.3 - 0.4 region, however, the gluon density at other x values is only 
constrained by the momentum sum rule. To explore the sensitivity of the triply differential 
cross section, we choose parton density functions with contrasting small-x behaviours; the 
improved MRSD- and MRSDc distributions of ref. [8] for which rg(x) behave as x-o,5 and 
x0 respectively at small x and Q*. The low-x behaviour of Fip measured at HERA is better 
fitted by an x-o,3 growth as parameterised by the MRSA distributions [9], however the 
range of predictions from the MRSD- and MRSDe distributions indicate where the triply 
differential cross section is sensitive to the small-x parton distributions. It is worth noting 
that because of the momentum sum rule, a parton density that is relatively large at z - 10m3 
must be relatively small at x - few x 10m2. This is demonstrated in Fig. 3a where we show 
the ratio of the ‘single effective parton density’ for the MRSDc and MRSD- parton density 
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Figure 3: (a) The ratio of the ‘single effective parton density’ of Eq. 4 for the MRSDo and 
MRSD- distributions compared to the MRSA parameterisation at ,U = 50 GeV. (b) The 
ratio of the gluon and quark parton densities in the MRSDo distribution compared to the 
MRSA parameterisation at the same scale. 

functions relative to that of the MRSA parameterisation. The hierachy evident at small z 
is reversed in the moderate z range, where the MRSDo density is 15% larger than that for 
the MRSD- density functions. 

At z N 1, the MRSD distributions are both larger than MRSA. This is primarily be- 
cause the up and down valence distributions are fitted separately in the more recent MRS 
parameterisations rather than the up and the (up plus down) valence combination. In any 
event, the distribution of partons inside the proton with x > 0.5 is very small and poorly 
constrained by data. 

If we examine the gluon and the quark densities separately (the latter summed over all 
quark and anti-quark flavors), shown in Fig. 3b, then we find that other than at small z, 
the quark densities are quite well determined by present-day data: different sets are quite 
similar. In contrast, it is the gluon densities that are poorly determined: different sets are 
substantially different even at intermediate z. As suggested by the ‘single effective parton 
density,’ and as we shall see in greater detail, the gluon densities are sufficiently important 
to jet production in ha&on-ha&on scattering to cause substantial variations in predictions 
dependent on the densities at moderate I. 

As can be seen from Eq. 2, the cross section is proportional to the product of structure 
functions. To get a feeling for how this product varies, Fig. 4 shows the parton-parton 
luminosity in the single effective subprocess approximation as a function of Q,,.~ for different 

5 



Figure 4: The parton-parton luminosity for the MRSDa and MRSD- parton densities in the 
‘single effective subprocess approximation’ as a function of nwst for [q*j = 0,l and 2 and 
p = 50 GeV. 

11)‘) values. This corresponds to diagonal strips across the 7, - Q plane. As expected, the 
largest luminosity occurs when XI and 12 are equally small, I)* N noost = 0. Once again, the 
MRSDe luminosity is approximately 20% larger than that for MRSD- As either IQ,,& 
or [?*I increases, the luminosity decreases rapidly. However the falloff is more rapid with 
increasing 111’1 than with increasing llmoostI. 

As mentioned earlier, the parton-parton subprocess scattering matrix elements are inde- 
pendent of moost. One consequence is that for fixed q’, the only variation of the cross section 
comes from the variation of the parton densities as aoosr runs over the allowed kinematic 
range. The lowest order squared matrix elements for gg + gg scattering are given by, 

W,12 = E(4cosh2(rj*) - 1)3 

cosh4( 7’) 8 cosh6(q*) ’ (7) 

These matrix elements are plotted in Fig. 5 as a function of 7’. At small Iq)‘) the matrix 
elements grow rapidly until Iv’1 N 2 where the matrix elements saturate. This behaviour 
complements the parton-parton luminosity which is largest at ‘7’ = 0. 

By multiplying the parton-parton luminosity with the squared matrix elements (along 
with the overall factor az(p)/8aEG ) we obtain the physical cross section. Because different 
parton distributions dominate for different momentum fractions (and hence 71 and B values), 
we expect the shape of the triply-differential cross section to be sensitive to the parton 
densities. This is illustrated in Fig. 6, where we show the leading order prediction for the 
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Figure 5: The lowest order squared matrix elements IM,,I*/ cosh4(n’) for gg + gg scattering 
as a function of 0’. 

ratio, 
R = J$,,y JET (&‘&, WRSDo) - ,&;~w WRSD-)) 

J,"Fy dETdEr:;~m (MRSD-1 ' 
(8) 

in the transverse energy range 45 GeV < ET < 55 GeV evaluated at p = ET’. In addition to 
the sharp cutoff marking the boundary of the allowed phase space, the excess of MRSDs over 
MRSD- at small 71 and oh and the depletion at large In11 N 1%) are seen clearly. Over the 
whole 7, - 11;, plane, the relative cross sections vary by +23% to -5%, with the most sizeable 
effects at nr N rh N 0 where the cross section is largest. At lowest order, ET, = ETA = ET, 
so that the distribution is symmetric under nr ++ Q. 

3 The O(c$) triply differential two jet cross section 

At next-to-leading order, some contributions admit three partons into the final state; for 
these, the parton fractions are given by, 

ETI ETZ ET3 
x1,2 = - 

fi 
exp(fd + - 

ETI 
ew(fv2) + -g exp(fm) t 

where ETA and ni (i = 1,. (3) describe the transverse energies and pseudorapidities of the 
three partons ordered in decreasing ET. Since the transverse energies of the partons are no 

‘The raw cross sections are histogrammed in 0.5 x 0.5 bins in 71 and 9. 
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Figure 6: The leading order prediction for the ratio of the triply differential cross section 
R(L0) defined in Eq. 8 for 45 GeV < ET < 55 GeV and p = ET. 

longer forced to be equal, ]ns] may increase to compensate for having a smaller transverse 
energy, ET~/ET~ < 1. The maximum possible values of 1x1 occur when ETA = ETA, 

- log 
( 

.,+dzyczE) <‘hClog(az+~), 

where a = (2 - zriexp(ni))/zri and ii = (2 - rriexp(-ni))/sri. The enlargement of 
phase space is shown in Fig. 1 (region III). We see that the maximum allowed value of 
(nil is unchanged at next-to-leading order so that the physical cross section will exhibit a 
rather sharp cutoff as ]r)i] increases. On the other hand there will be a more gradual fall 
off in the cross section as l-1 increases. Indeed, adding more partons into the final state 
further increases the allowed r~s range corresponding to the production of more and more 
soft partons. 

To compute the next-to-leading order cross section, we use an O(c$?) Monte Carlo pro- 
gram for one, two and three jet production based on the one-loop 2 + 2 and the tree 
level 2 + 3 parton scattering amplitudes [lo, 111 described in ref. [12]. This program uses 
the techniques of refs. [13, 141 to cancel the infrared and ultraviolet singularities thereby 
rendering the 2 + 2 and 2 -+ 3 parton processes finite and amenable to numerical com- 
putation. The parton four momenta are then passed through a jet algorithm to determine 
the one, two and three jet cross sections according to the experimental cuts. Different cuts 
and/or jet algorithms can easily be applied to the parton four-momenta and, in principle, 
any infrared-safe distribution can be computed at O(az). 

In order to compare the theory with experiment, we use the parton level equivalent of the 
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Figure 7: The next-to-leading order triple differential distribution for 45 GeV < ET < 
55 GeV and p = ET, for (a) MRSDc and (b) MRSD- parton densities. 

standard ‘Snowmass’ cone algorithm [15] with AR = 0.7 and require at least two jets in the 
event. Furthermore, we note that the assignment of which jet is hardest is not infrared safe, 
so that we must symmetrize over the hardest and next-hardest jets (in transverse energy). 
The distributions we shall examine require that the hardest jet lie in a certain ‘trigger’ range; 
each event will be counted twice if the next-hardest jet also lies in this ET range. The three- 
dimensional cross section evaluated at p = E rr, where ET, is the transverse energy of the 
hardest jet in the event, is shown in Fig. 7 for 45 GeV < ET < 55 GeV. The extension of 
the phase space to smaller ns is seen clearly, along with the rather sharp cutoff at ]nr( - 3.5. 

Although the cross sections for the two parton densities appear similar, the difference 
between the predictions observed at lowest order is preserved. This is illustrated in Fig. 8, 
where we show the next-to-leading order prediction for the fractional difference ratio defined 
in Eq. 8. As at lowest order, the difference varies between +23% at nr - % - 0 and -10% 
at 01 - 72 - -2.5. We note that the ratio is most negative when zr - x$ and 2s - 1. This 
is the region where the singular behaviour of the MRSD- parton densities dominate over 
the less singular MRSDc distributions [5]. 

One indicator of the reliability of perturbation theory is the ratio of next-to-leading order 
to leading order cross sections*. This is shown in Fig. 9 for two slices of the triply differential 
distribution. First we consider the slice nr = 0 and let m vary. At large ]%I, the phase space 
extends beyond the strict leading-order kinematic limit of Q < cash-‘( l/z=) = 3.68. As a 

‘The normalisation is extremely sensitive to the renormalization scale choice in the leading order cross 
section. 

9 



Figure 8: The next-to-leading order prediction for the ratio of the triply differential cross 
section R(NL0) defined in Eq. 8 for 45 GeV < ET < 55 GeV and p = ETI. 

consequence, the corrections are large. However, this does not signal the emergence of large 
logarithms which might spoil the applicability of perturbation theory. Rather, the large 
corrections are due to the more restricted phase space available at leading order, that is the 
absence of region III of Fig. 1. Towards the edges of available phase space, the leading-order 
cross section is thus forced artificially to zero, and the ratio goes to infinity. At yet-higher 
order, however, one expects further corrections to be reasonable (until one approaches the 
outer edges of region III or its higher-order analogs). Second, we keep ~2 = 0 fixed and allow 
71 to vary. We see that the corrections for central Ini) are small, however as the magnitude 
of ni approaches the edge of phase space, the next-to-leading order corrections significantly 
reduce the cross section. In this limit, the second jet is forced to have ETA N ETA and 
the available phase space for soft gluon emission is curtailed. As a consequence, radiative 
corrections lower the cross section close to the edge of phase space. These corrections are 
a result of the appearance of large logarithms, and one does expect perturbation theory to 
behave badly near this edge of phase space. ‘In summary, we see that the triply differential 
cross section is reliably predicted over the whole range of the nr -% plane with the exception 
of the very large In11 slices. 

We have seen how the shape of the two-dimensional distribution is sensitive to the parton 
density functions. However, there is also a dependence on the renormalisation and factori- 
sation scales pa and ~~~ that could in principle obscure the differences due to the structure 
functions. To get a feeling of how severely the scale uncertainty affects the shape, Fig. 10 

3Throughout we choose PR = )L.V = p, however, other choices are possible. 
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Figure 9: The ratio of next-to-leading order (NLO) to leading order (LO) predictions as a 
function of q.r for ni = 0 (solid) and of r)i for qs = 0 (dashed) for 45 GeV < ET < 55 GeV, 
p = ET and the MRSD- structure functions. 

shows the next-to-leading order predictions for the ratio, 

R = &; JET ( dET"d',4dm b = &-I) - c&$-m (p = xET1)> 

J-j;;; d.% ,&$& (P = Em) 
(11) 

for the MRSD- parton densities and X = 0.5 and 2. Because the absolute magnitude of 
the cross section (which depends on a,(p)) is poorly predicted, the prediction for ~1 = XET~ 
has been normalised to the cross section for p = ET, at 111 - ns - 0. For X = 0.5, 
c = 0.93, while for X = 2, c = 1.08. We have restricted the pseudorapidity range in the 
plot to [nil, 1~1 < 2.5 since for higher pseudorapidities the next-to-leading order effects are 
large as discussed above. As a result, for such pseudorapidities, there is a sizeable scale 
variation. However, for central pseudorapidities, the shape is changed by less than 5% which 
is significantly less than the difference between the two representative parton distributions. 

Once the experimental data are available, it should therefore be possible to extract in- 
formation on the density of partons in the proton. In addition to the uncertainty in the 
normalisation of the theoretical predictions, there is a significant uncertainty in the experi- 
mental normalisation as well, due to uncertainties in the luminosity measurement, jet energy 
calibration, jet trigger efficiency, and other aspects 4. It therefore makes sense to allow the 
overall normalisation of the theoretical prediction, uTH, to float, so that by varying c the x2 

‘Part of the experimental uncertainty can be eliminated by normalking with respect to the W cross 
section. 
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Figure 10: The next-to-leading order prediction for the ratio of the triply differential cross 
.section R(NL0) as defined in Eq. 11 with (a) X = 0.5 and (b) X = 2 for 45 GeV < ET < 
55 GeV and p = ETA. 

for 

J ETWX 
d& 

&EXP d30TH 

ET&, d&dl?l d% - CdETdrl,d~ ’ > 
(l-4 

summed over the different 71, ~2 cells is minimised for a given parameterisation of the parton 
densities. Finally, the’input parameterisations can be adjusted so that the x2 is further 
reduced. This can be done simultaneously for different slices in transverse energy. An even 
more interesting possibility would be to map out the evolution of the parton densities directly 
by following trajectories of constant (zr,~) in the 71 - m plane as a function of ET. 

4 The DO signed distribution 

Recently, the DO collaboration has presented preliminary data [l, 41 for a particular slicing of 
the triply differential distribution - the so-called signed pseudorapidity distribution. This 
amounts to taking two strips of the nr - % plane for a fixed transverse energy interval and 
combining them in reverse directions. The pseudorapidity of the leading jet is constrained 
to lie in the range ]vr]min < ]qr] < ]nr] ,,,aX and the distribution is plotted as a function of 
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Figure 11: The signed pseudorapidity distribution for (a) 45 GeV < ET < 55 GeV, 0.0 
< 111~1 < 0.5 and (b) 55 GeV < ET < 65 GeV, 2.0 < 1711 < 2.5 at both LO and NLO. The 
preliminary experimental results from [l] are also shown. The factorisation scale is chosen 
to be the transverse energy of the hardest jet, p = ETA. 

do 1 J -%n.x 1 

d)v&ign(r7l~) E G ~~~~~ dET 2Ar11 -(J Ihlm.x 
IhI I”h dn 

d% J -I’lllmin 

d&dwdrh - -I’l1L dm 
(13) 

where sign(l711)2) = -1 if 111 and % have opposite sign and +l if they have the same sign. 
Positive values of ]*lsign(qlQ) correspond to same-side dijet events, while negative values 
are associated with opposite-side events. In principle, both strips contain equal information, 
but combining them serves to reduce the statistical error. Once again, we must sum over 
the hardest and next-hardest jet in order to ensure that this distribution is infrared-safe. 

In the currently available data, DO has examined two slices in transverse energy, 45 GeV 
< ET < 55 GeV and 55 GeV < ET < 65 GeV, and two strips in Q, 0.0 c 1~~1 < 0.5 and 
2.0 < 1’711 < 2.5. As more data become available from the current Tevatron run, this analysis 
can be extended to cover a larger range of ET and 17. 

We first fix 171 to lie in the central pseudorapidity slice, 0.0 < 11)1 I < 0.5 and examine the 
pseudorapidity of the second jet for the transverse energy interval 45 GeV < ET < 55 f&V. 
This strip includes the 111 N 1)2 N 0 region that is sexkitive to parton densities at z N 0.05, 
We also consider the slice at larger 71, 2.0 < 1~11 < 2.5 but for a slightly higher transverse 
energy interval, 55 GeV < ET < 65 GeV. The predictions for these distributions for both 
MRSDo and MRSD- parton densities are shown in Fig. 11 with the preliminary data from the 

13 



lb) 
-,,.0.5 
----‘,,.2.5 

99 -> 9g 

ICC9 

(4 
- 

;: ‘Z ____. . 

em 

.- Loo 
,5 

1 
2 
24c.l 

100 

0 
l -2 0 2 I .4 -2 0 ‘ 

Iti rmhl l-a?) w wnhl ti 

--.. -\ \\ ‘\ 

‘V 

\\ \\ \\ \ ,’ ‘\ e’ *-_-’ 

1 

Figure 12: The (a) parton-parton luminosity for the MRSD- parton densities and (b) squared 
matrix elements in the ‘single effective subprocess approximation’ for 71 = 0.5 and ET = 
50 GeV (solid) and ~1 = 2.5 and ET = 60 GeV (dashed). The factorisation scale is chosen 
to be 50 GeV. 

DO collaboration [115. We see a clear asymmetry favouring smaller values of j~jsign(~l~). 
In other words, for ~1 N 0, the opposite-side cross section (negative Iw[sign(‘llQ)) peaks 
away from Q N 0, while the same-side cross section (positive jwlsign(1]1%)) monotonically 
decreases. A similar effect has been observed in the same-side/opposite-side cross section 
measured by CDF (31. 

This is is due to an interplay between the parton-parton luminosity and the matrix 
elements. Fig. 12 shows the parton-parton luminosity in the ‘single effective subprocess 
approximation’ and the 99 + 99 matrix elements of Eq. 7 as a function of I~Isign(~1~). 
We see that the maximum of the parton-parton luminosity occurs at I~jsign(~~~) - 0.25 
and 0.75 for Q = 0.5 and 2.5 respectively, while the minimum of the matrix elements always 
lies at lr&ign(~l~) = 1’1,l. Th e net effect of the shift in the peak of the parton-parton 
luminosity to positive I~lsign(~l~) combined with the shift of the minimum of the matrix 
elements to larger values of lwlsign(lllw) is an enhancement of the cross section at negative 
Iwlsign(qlr$ and a depletion at positive j~lsign(~l~), clearly visible as an asymmetry in 
Fig. 12. 

As suggested by the solid line in Fig. 9, the next-to-leading order corrections reduce the 
cross section uniformly by about 10% until the kinematic limit on Q from the lowest order 

5We have divided the data by a factor of two to account for the size of the pseudorapidity interval. 
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Figure 13: The ratio of next-to-leading order predictions for the signed distribution for the 
MRSD- parton densities evaluated at p = XE rr 
X = 4 (dotdashed) relative to that for p = 

for X = 0.5 (solid), X = 2 (dashed) and 
E TI for (a) 45 GeV < ET < 55 GeV and 

0.0 < In11 < 0.5 and (b) 55 GeV < ET < 65 GeV and 2.0 < InIl < 2.5. The ratio of next- 
to-leading order predictions for the MRSDe and MRSD- parton densities with p = ET, is 
shown as a dotted line. 

process is approached. We also see that the difference between the MRSDs and MRSD- 
predictions is about 23% at InsI N 0 as expected from Fig. 8. 

At larger pseudoranidities, the next-to-leading order predictions give a much better de- 
scription of the data than at leading order. The preliminary data appear to favour the 
MRSDs parameterisation at the z values probed here, z N 0.05. However, the errors are 
still large, and as mentioned at the end of section 3, there are significant uncertainties in the 
overall normalisation of the experimental data. 

As discussed in the previous sections, there is also an uncertainty in the normalisation 
of the theoretical cross section due to the choice of renormalisation and factorisation scales. 
This is particularly evident for the signed distribution since the lowest order cross section 
is proportional to ok. Even at next-to-leading order, the overall normalisation is still 
uncertain. However, one would expect that the shape of the distribution is relatively insen- 
sitive to varying ps. This is illustrated in Fig. 13, which shows the ratio of next-to-leading 
order predictions for different scales relative to the next-to-leading order MRSD- prediction 
forp=Err. 

As expected, the normalisation of the small 1~1 region is quite sensitive to the choice of 
scale, however, the shape of the distribution for small I%( is essentially unchanged for the 
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central ni slice, 0.0 < ]ni] < 0.5. For large pseudorapidities, ]%] > 3, there is of course 
a large scale dependence. This is a consequence of exceeding the lowest-order kinematic 
limit on %; in this region, an O(of) calculation such as the one performed here is in fact a 
leading-order one. As a contrast, the ratio of the next-to-leading order predictions for the 
MRSDs and MRSD- parton densities’at p = E ri are also shown. In addition to a sizeable 
change in the normalisation, the shape of the distribution around 1-1 N 0 is also changed, 
It remains an experimental question as to whether this difference in shape can be detected. 

5 The CDF same-side over opposite-side ratio 

The interpretation of DO signed distribution measurement hinges strongly on the absolute 
normalisation of the cross section. Thus one would need to know the jet energy correction 
well before one can constrain the parton density functions. To circumvent this problem the 
CDF collaboration has considered a ratio, that of same-side (SS) to opposite-side (OS) cross 
sections [3]. For the same-side cross section, both jets have roughly the same pseudorapidity, 
while in the opposite-side cross section the jets are required to have roughly equal, but 
opposite pseudorapidities. One then forms this ratio, as a function of the pseudorapidity in 
several tranverse-energy slices. In a realistic experimental analysis, the pseudorapidities and 
transverse energies will be binned so that, 

dl)J Jh+<&<&m.x 

M?)] 
E~rni.<E~<E~rn.x 

From these cross sections we form the SS/OS ratio, 

Rss~os(‘)~ ET,~.<ET<ET~.. = 
uos”‘lE~~~.<ET<ET..= ’ 

(14) 

(15) 

(16) 

with the advantage that a large part of the experimental and theoretical uncertainties cancel. 
However, most of the dependence on the parton densities in the central region where ni - 
m N 0 is also removed. As we saw in the previous sections, this is exactly the region where 
there can be a strong dependence on the parton density functions. Nevertheless, we can still 
study the behaviour of the gluon density at small z by examining the SS/OS ratio at large 
pseudorapidity. Since the z values probed are much smaller than in the signed pseudorapidity 
distribution, typically z N 4Es/s rather than z N 2&/fi, studying this ratio is to a large 
extent complementary to studying the DO signed pseudorapidity distribution. 

In the preliminary CDF measurement [3], the jet transverse energy was chosen to lie in 
four separate bins, 27 GeV < ET < 60 GeV, 60 GeV < ET < 80 GeV, 80 GeV < ET < 
110 GeV and 110 GeV < ET < 350 GeV and the pseudorapidity interval to be An = 0.2. 
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Figure 14: The leading order parton fractions probed by the SS/OS cross section ratio for 
ET = 15 GeV. 

It may prove possible to extend the analysis to smaller transverse energy and include a fifth 
bin, 15 GeV < ET < 27 GeV. As for the triply-differential and signed rapidity distributions, 
we must symmetrize explicitly over the leading and next-to-leading transverse energy jets 
in order to ensure that the sided cross sections are infrared safe. In addition, in order to 
suppress events with three or more hard jets, an azimuthal angle cut between the two leading 
jets of ?I - 0.7 < A4 < ?r + 0.7 is applied. 

To get a feeling for the range of parton fractions probed by this particular cross section, 
Fig. 14 shows the three different momentum fractions (using the leading order definition of 
Eq. 1) as a function of the pseudorapidity for the smallest accessible jet transverse energy 
ET = 15 GeV. We see that it is possible to probe parton fractions for z values as small as 
3 x 10-d < Z < 1. 

The next-to-leading order predictions for the SS/OS ratio for the very low transverse 
energy bin, 15 GeV < ET < 27 GeV, are shown in Fig. 15. Because very low z values 
are encountered, the different parton density functions give a broad range of predictions. At 
present, no data are available for this particular transverse energy range. However, even with 
relatively large experimental uncertainties one can still easily discriminate between different 
parton densities. This makes the very small ET bin particularly interesting. 

The region around n = 3 has the largest sensitivity to different parton density functions, 
corresponding to a smallest parton fraction of 8 x 10m4. At larger pseudorapidities (and 
therefore smaller x values) there is a severe phase space supression and the cross section 
(and event rate) decreases rapidly. 
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Figure 15: The next-to-leading order predictions for the SS/OS ratio evaluated at p = &i for 
the MRSD- (solid), MRSDs (dotted) and MRSA (dashed) parton distributions as a function 
of 11 for the smallest ET bin accessible to the CDF collaboration, 15 GeV < ET < 27 GeV. 

In the other four transverse energy bins, the CDF collaboration has published prelimi- 
nary data which we display along with next-to-leading order predictions for three different 
parton density sets in Fig. 16. Because the experimental results are preliminary, we should 
be careful in drawing conclusions from these results for the time being. These results do 
however prefigure discriminatory powers which should emerge as the experimental errors 
shrink with the inclusion of more data from the current Tevatron run. Even with the cur- 
rent uncertainties, the smallest ET bin suggests a deficiency in the density of MRSDs partons 
round 2 - 10v3, and in contrast to the signed rapidity distribution discussed in section 4, 
favors the MRSD- set of structure functions. 

For the higher transverse energy bins higher x values are sampled and there is not much 
difference between the different parton density functions. As an example, the highest trans- 
verse energy bin is mostly sensitive to parton momentum fractions around 0.1, where the 
parton density functions are, in principle, tightly constrained. Of course, one should still 
compare the data with theory. That different parton densities give the same results does 
not guarantee they are correct; it merely indicates that they either use the same data as a 
constraint or use the same assumptions to derive the individual parton densities. 

For this distribution as well, we should also consider the uncertainty in the theoreti- 
cal predictions arising from renormalisation and factorisation scale dependence present in 
perturbative QCD calculations. To study this, Fig. 17 shows the SS/OS ratio for the 27 
GeV < ET < 60 GeV transverse energy bin at pseudorapidity n = 2.6 as a function of 
p = pi = PF. This phase space point offers the highest discriminatory power with the 
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Figure 16: The next-to-leading order (NLO) predictions for the SS/OS ratio evaluated at 
fi = &r for the MRSD- (solid), MRSDo (dotted) and MRSA (dashed) parton distributions 
as a function of 11 for the four transverse energy bins, 27 GeV < ET < 60 GeV, 60 GeV 
< ET < 80 GeV, 80 GeV < ET < 110 GeV and 110 GeV < ET < 350 GeV. .4lso shown is 
the preliminary CDF data of ref. [3] 

currently available data. As an illustration we have chosen the MRSD- set which seems 
to be favoured by these data. The reference scale is the transverse energy of the highest 
ET jet in the event, p = ET,, as in the previous sections. The leading-order prediction 
does not depend on the strong coupling constant. As the SS and OS cross sections probe 
the parton densities at different momentum fractions z, it does depend on the factorization 
scale, but this gives rise only to a trivial scale dependence: the SS to OS ratio rises lin- 
early with lOg(p/&). At next-to-leading order, the prediction does depend on the coupling 
constant, and the overall dependence is less trivial. It so happens that the reference scale, 
p = ET*, coincides with the minimum in the variation of the ratio with respect to scale. 
Either increasing or decreasing the scale results in an increase of the SS/OS ratio. Varying 
the scale by a factor of two around the reference scale, we get a feeling for the theoretical 
uncertainty. The largest variation comes from reducing p and increases the cross section 

19 



. CDF em. 
27GB”<E,<60GB” y---pp 

l 
__-- 

__-- 
@z __-- 

2 __-- 
__-- 

__-- 
__-- 

I 

0 
too 

IllET 

Figure 17: The renormalisation/factorisation scale dependence of the SS/OS ratio for v = 2.6 
in the 27 GeV < ET < 60 GeV bin using the MRSD- structure functions. The data point 
is taken from ref. [3]. 

by approximately 20%. Due to this uncertainty one cannot really discriminate between the 
MRSD- distributions with zg(5) = Z-O.~ and the more recent MRSA fits with zg(x) N rmos. 
However, it should be possible to exclude the MRSDs distributions once the final CDF data 
are published. To discriminate between MRSD- and MRSA, it will be necessary to make a 
measurement in the 15 GeV < ET < 27 GeV transverse energy bin. 

Fig. 18 shows the ratio of next-to-leading to leading order predictions (the K-factor) for 
27 GeV < ET < 60 GeV and 80 GeV < ET < 110 GeV using the MRSD- parton densities 
and fi = ET,. The shape of the SS/OS ratio is basically unchanged between -2 _< 7 5 2. 
For larger pseudorapidities we get a rapid change in the K-factor. This is again mainly due 
to the fact that the leading order cross section is quickly forced to zero by the kinematic 
constraints on 2 + 2 scattering, and does not indicate the presence of large logarithms which 
might spoil the applicability of perturbation theory. We have parameterised the K-factor as 
an even polynomial in 7, 

K(q) = A + Brf + Cq4 + D$ + E$. (l’i) 

The fitted constants A.. E for all five transverse energy intervals are given in Table 1. We 
see that for this double ratio, the corrections are extremely small in the central region. 
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Figure 18: The ratio of next-to-leading to leading order predictions for the SS/OS ratio with 
~1 = ETA and MRSD- parton densities in the five transverse energy intervals. 

6 Conclusions 

In this paper we have made a detailed study of the two-jet cross section in hadron-hadron 
collisions for a given range of jet transverse energy as a function of the pseudorapidities of 
the two jets. This distribution is particularly sensitive to the parton density functions at 
small (r N few x 10m3) to intermediate (I N few x IO-‘) parton momentum fractions for 
jet transverse energies accessible to the CDF and DO experiments at Fermilab. For example, 
parton distributions that are relatively large at small z (and therefore constrained to be rel- 
atively small at larger zr by the momentum sum rule) lead to a relative enhancement of the 
same-side two-jet cross section at large pseudorapidities (~1 N Q >> 0) and a relative deple- 

Pseudorapidity bin A B C D E 
15 GeV < ET < 27 GeV 1.0197 0.0062 0.0226 -0.0025 8.166e-5 

27 GeV < ET < 60 GeV 0.9992 -0.019 0.0453 -0.0094 5.592e-4 

60 GeV < ET < 80 GeV 0.9653 0.072 0.0326 -0.0208 0.0027 
80 GeV < ET < 110 GeV 0.9869 0.0891 -0.0332 0.0057 6.427e-4 
110 GeV < ET < 350 GeV 1.0121 -0.1974 0.4985 -0.2743 0.0457 

i 

Table 1: The parameterisation of the K-factor for MRSD- in the 5 transverse energy bins. 
The fitted formula is K(q) = A + B$ + Cv4 + Drf + E$ and is intended to be used for 
returning the K-factor for the bin, given the center of the bin (that is n = 0.2, 0.6, 1.0, .) 
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tion for central jets, ni N w N 0. We have studied the next-to-leading QCD corrections to 
this distribution in some detail To discuss the properties of the cross section it is convenient 
to divide the ni - qs plane into two regions, the central region where the pseudorapidity of 
the two jets is less than the lowest order kinematic limit, (ntl, (%FL( < cash-‘(l/s=) and the 
foward region where the rapidity of one of the jets approaches or exceeds the lowest order 
boundary. In the central region, 

i) the next-to-leading order corrections are small and perturbation theory works well 

ii) the scale uncertainty in the overall normalisation is reduced. Varying p by a factor of 2 
about p = Eri changes the next-to-leading order prediction by 0(8%). 

iii) the scale uncertainty in the shape of the distribution is quite small. For the same 
variation of CL, the relative bin-to-bin correction is less than 0(2%) - see Fig. 10. 

On the other hand, in the forward region, 

i) the next-to-leading order corrections are important and improve the agreement with 
experimental data. 

ii) there is a considerable scale uncertainty because the corrections calculated in a ‘next- 
to-leading’ order program corrections are effectively lowest order. 

Because the central pseudorapidity region is both sensitive to the parton densities and stable 
to higher order corrections, the triply differential distribution offers an excellent chance to 
gain extra information about the distribution of partons in the proton. The current and 
future runs of the Tevatron at Fermilab should yield copious quantities of two-jet events and 
once precise experimental data are available, it should be possible to make a determination 
of the gluon density at small and intermediate 2 values. However, in addition to the uncer- 
tainty in the normalisation of the theoretical predictions, there is also an uncertainty in the 
experimental normalisation due to uncertainties in the luminosity measurement, in the jet 
energy calibration, and other effects. The information on the parton densities lies more in 
the shape than the overall normalisation, and one way of determining the parton densities 
is to allow the overall normalisation of the theoretical prediction, rrTH, to float, so that by 
varying c the x2 for 

J 

ETrn.l 
d& 

ET& ( 

&EXP d3aTH 

d-&dwhz - ‘dETdqldl)2 ’ ) 
summed over the different 171, Q cells in the central pseudorapidity region is minimised for 
a given parameterisation of the parton densities. By adjusting the input parameterisations, 
the x2 may be further reduced as the predicted shape becomes closer and closer to that 
observed in the data. Of course, data can be taken for many slices in transverse energy. 
This allows the possibility of following the evolution of the parton densities directly by 
following trajectories of constant (zi,xs) in the ni - ns plane as a function of ET. 
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At present only preliminary data are available for particular slices of the qi - n-z plane. 
The signed distribution (sect. 4) presented by the DO collaboration is primarily sensitive to 
intermediate 5 values, As we may expect from the preceding discussion, the shape is well 
predicted, but the normalisation is uncertain. Nevertheless, the preliminary data appear 
to favour the MRSDa parameterisations (Fig. 11). On the other hand, the same-side to 
opposite-side cross section ratio presented by the CDF collaboration probes much smaller r 
values. Once again, the shape is relatively unchanged by including the next-to-leading order 
corrections. As shown in Fig. 16, the preliminary data (again with large errors) appear to 
favour the more singular MRSD- parameterisation. Of course, with the current experimental 
data sample, no definitive conclusion can be drawn. However, if these tentative observations 
are accurate, it would imply that the data favour the parton density with the largest density 
of gluons at both I - few x 10m3 and z N few x lo-*. In other words, there are more 
gluons present in the small and intermediate z regions than expected from the momentum 
sum rule, which may in turn suggest that the density of gluons is not as well determined 
by direct photon data (WA70) as previously thought. Data from the current Tevatron run 
should help to provide an answer to this puzzle. 
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